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1. Introduction

Development of high-precision space-age geodetic techniques during the last two

decades has led to unprecedented accuracy in our knowledge of variations in the Earth’s rate

of rotation and orientation in space. These measurements have, in turn, led to greater under-

standing of the physical processes which influence Earth orientation, including atmospheric

and oceanic motions, core-mantle interactions, and tidal forces. Earth orientation parameter

values are regularly employed in, and are essential to, the fields of astronomy, astrometry,

and celestial mechanics, among others. Of particular importance for the study presented here

is the need for accurate Earth orientation to enable the precise tracking of interplanetary

spacecraft. The Deep Space Network (DSN), operated by the Jet Propulsion Laboratory

(JPL) for the National Aeronautics and Space Administration (NASA), requires continuous,

real-time knowledge of Earth rotation and polar motion variations in order to precisely track

and navigate interplanetary spacecraft such as Magellan,  Galileo, Ulysses, and Cassini

[Treuhaft and Wood, 1986; Runge, 1987; JPL, 1991].

Methods to combine the diverse set of geodetic measurements of Earth orientation

that are currently available, and to interpolate and extrapolate these data to generate an opti-

mal estimate of Earth orientation, have been under development at JPL for a number of years.

The strategy currently in use is a Kalman filtering scheme based on Earth orientation param-

eters and their excitation functions that incorporates stochastic models of the important

physical processes and takes into account the variable form, quality, and temporal density of

the data provided by different measurement services [Morabito et al., 1988]. The Earth ori-

entation series thus generated have been shown to be robust and of high quality, and to agree

quite well with those generated by other institutions [King, 1990; IERS, 1992a; Grosset al.,

1993].

Of the five components of Earth orientation-longitude (d@ and obliquity (de) off-

sets of the celestial ephemeris pole, X and Y polar motion, and Universal Time (UTl )--the

one which varies most dramatically and unpredictably from day to day, posing the greatest
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challenge for real-time estimation, is UT1, Likening the rotating Earth to a timepiece, UT 1 is

a measure of the angle about the polar axis through which the Earth has rotated, usually spec-

ified with respect to a reference time defined by atomic clocks (e.g., UT1–UTC or UT1 –

TAI). UT1 is conventionally given in units of milliseconds of time, where 1 ms corresponds

to an angle of approximately 73 nrad and an equatorial angular displacement of 46,5 cm.

Variations in the rate of change of UT1, dU/dt,  are of great interest to the scientific

and navigation communities, The excess length of the day

related to the UT1 rate-of-change (to first order in A/Ao) by

A=-Ao~

A (often referred to as ALOD) is

(1)

where A is the difference between the true length of day and a nominal day of 86,400 seconds

duration (Ao), and U represents UT1–TAI [Lambeck, 1980, for example], The quantity A

will henceforth be referred to as LOD, even though it represents the excess length-of-day

rather than the actual length of the day.

In order to correctly model the stochastic behavior of quantities such as UT1 and

LOD, the effects of physical processes which influence the rotation rate in a known and pre-

dictable manner must be removed, Foremost among these are the solid-Earth and equilib-

rium ocean tides, which can be directly removed from UT1 and LOD by applying corrections

obtained from conventional tidal models [Yoder et al., 1981]. Unless otherwise noted, UT1

(U) and LOD (A) refer here to these quantities with both long- and short-period tides .

removed (the UTIR’ and LODR’ of the IERS [1992a]). With tides removed, LOD typically

varies by a few hundredths of a millisecond over a 24 hour period. On subseasonal time

scales (i.e., less than a few months), LOD behaves as a random-walk stochastic process

[Eubanks et al,, 1985; Dickey et al,, 1989; 1992].

The challenge of short-term UT1 prediction stems from the limitations implicit in a

stochastic model for LOD: even if the model accurately characterizes the behavior of the

time series in an average sense, particular episodes can be found when the LOD variability
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substantially exceeds that typically expected. For example, LOD has appeared to vary

monotonically by as much as 0.1 ms per day over several days, Given the present stochastic

models for LOD and UT1 behavior, the errors in the predicted values of UT1 (i.e., those

estimates of UT1 made after geodetic measurements are no longer available) during these

episodes will exceed the accuracy level currently required by the DSN (about 0.6 ms) in less

than 4 days. Although frequent geodetic measurements of UT1 are routinely being made,

reducing the raw data and generating UT1 estimates ordinarily requires at least two or three

working days; hence, the latest UT 1 data are rarely less than two days old, and are often a

week or more old for some measurement services. Because of this delay, even real-time

estimates of UT 1 are potentially in error by an amount exceeding the DSN requirements.

Consequently, two different tacks are being pursucxi at JPL to improve the accuracy of esti-

mates and predictions of UT1: 1) more timely data, and 2) improved prediction schemes.

The work reported here deals with the incorporation of axial atmospheric angular momentum

(AAM) analysis data and AAM forecast data into the JPL Kalman Filter as a proxy for LOD;

the former are the timeliest data currently available, while the latter represent a prediction of

LOD based on physical, rather than stochastic, models.

Fluctuations in Earth rotation over time scales of less than a few years are dominated

by atmospheric effects, and numerous studies have demonstrated the high correlation

between LOD and AAM at these periods [Rosen and Salstein, 1983; Eubanks et al., 1985;

Hide and Dickey, 1991, for example]. Several meteorological centers engaged in operational

weather forecasting generate both near-real-time estimates of A AM and intermediate-range

forecasts of AAM. Studies by Rosen et al, [1987; 1991] (see also Bell et al, [1991]) have

demonstrated that these AAM forecasts can be skillful indicators of AAM (relative to simple

statistical predictors) out to several days. Whereas AAM analysis values are generated from

contemporaneous meteorological measurements and thus represent a current estimate of

atmospheric angular momentum, AAM forecast values represent estimates of the global

atmospheric angular momentum at a future epoch based on physical models, and thus can be
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used to estimate future values of LOD. Our approach is to utilize these AAM analysis and

forecast data as proxy data sets for LOD, to be relied on primarily when geodetic data are

infrequent or no longer available.

The data types, both geodetic and meteorological, that are employed in the JPL filter,

along with stochastic models for the behavior of both LOD and AAM, are discussed below in

section 2, Section 3 describes the implementation and functioning of the JPL Kalman Filter,

henceforth referred to as KEOF (the Kalman Earth Orientation Filter). Section 4 deals with

the accuracy of predictions of LOD and UT1 that emerge from KEOF, and their improve-

ment when AAM analysis and forecast data are incorporated into the filtering scheme.

Section 5 discusses additional difficulties with UT1 estimation and proposes some future

improvements in the filtering and prediction strategies.

2. The Measurement Data

In the optimal combination of diverse data types to form a best estimate of UT1, a

number of factors must be dealt with explicitly. These include the accuracy and precision of

the various data sets, the variable interval between measurements, that component or linear

combination of components of Earth orientation which a particular technique actually mea-

sures, and any inter-series biases or trends. These considerations, as well as the need to accu-

rately model the growth in Earth orientation uncertainty in the absence of measurements,

motivated the design and implementation of the JPL Kalman Filter.

For near-real-time operational estimates of UT1, only those high-precision data types,

both geodetic and meteorological, that are available in a timely fashion are used in KEOF,

Table 1 summarizes the characteristics of these various data sets, which are described more

fully below; additional information may be found in IERS [1992w 1992b].

Geodetic Data

Three modern high-precision techniques have been used over the past decade to

monitor Earth orientation: Very long baseline interferometry (VLBI), satellite laser ranging
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(SLR), and lunar laser ranging (LLR). All three techniques are capable of milliarcsecond-

level determination of various components of Earth orientation. Five services provide the

geodetic data used in this study: (1) The National Oceanic and Atmospheric Administra-

tion’s (NOAA) Laboratory for Geosciences provides single-baseline VLBI measurements of

UT1–UTC daily, and multiple-baseline VLBI UT1 and Polar Motion (UTPM) estimates

every five-to-seven days through the IRIS (International Radio Interferometric  Surveying)

program, These are known as the IRIS intensive and IRIS multibaseline data sets, respec-

tive y. (2) The NAVNET VLBI program of the U. S. Naval Observatory (US NO) produces

muhibaseline UTPM data weekly, staggered in time with those of the IRIS multibaseline

network. JPL provides both (3) VLBI measurements of Earth orientation through its

TEMPO (Time and Earth Motion Precision Observations) program roughly twice a week,

and (4) LLR Earth orientation measurements at irregular intervals. (5) The Center for Space

Research (CSR) of the University of Texas at Austin provides SLR measurements of polar

motion and UT 1 at roughly three-day intervals.

The IRIS and NAVNET VLBI data and the CSR SLR data used operationally in

KEOF are distributed weekly by their respective organizations, usually on Wednesdays to

facilitate their use by the International Earth Rotation Service (IERS) Rapid Service. In each

delivery, the most recent IRIS data are typically ten days to two weeks old, the most recent

NAVNET data are typically six to ten days old, and the most recent SLR data are typically

three to five days old. Thus, on any given day, the most recent data available from these
.

services may be up to 7 days older than these values. The TEMPO data are reduced at JPL

and are made available to KEOF as soon as processing is complete. When conditions are

ideal, 24-hour turnaround can be achieved, although two or three day delays are more typical

[Steppe et al., 1992b]. LLR data are also reduced at JPL and solutions can be obtained in

under a day, but these measurements are collected and processed in a less frequent, non-

operational mode.



The formal errors assigned to the UT1 measurements differ considerably among

techniques [IERS, 1992b]. IRIS multi baseline data typically have the smallest formal errors;

for recent data, these range from 0,015 to 0.020 ms, There is evidence, however, that these

numbers are overly optimistic, and that more realistic error estimates are up to one and a half

times the formal errors [Gross, 1992; IERS, 1992a]. NAVNET formal errors are also quite

low, ranging from 0,015 to 0.025 ms for recent data, but these values may also need to be

inflated by up to 30Y0. In contrast, the IRIS intensive and SLR UT1 values possess formal

errors ranging from 0.04 to 0.10 ms. (Note, however, that SLR UT 1 data are not used in the

operational filter. SLR UT 1 data are tied to an independent UT 1 solution at long periods to

correct for satellite node effects and thus do not constitute a truly independent data set [Eanes

and Watkins, 1992]. For this and other reasons, only SLR polar motion data are used by

KEOF.) TEMPO and LLR do not estimate UT1 directly, but instead sense those components

of Earth orientation that can be measured from one baseline or site. For TEMPO VLBI,

these are the components of Earth orientation orthogonal to rotations about the VLBI base-

line (transverse and vertical, or equivalently, UTO and variation of latitude), while for LLR,

the measured quantities are UTO and variation of latitude [Lambeck, 1988; Steppe et al.,

1992b; Grosset al., 1993]. Formal errors in these components typically range (in time units)

from 0.02 to 0.20 ms for TEMPO and from 0.03 to 0.30 ms for LLR.

Atmospheric Data

Estimates of the total angular momentum of the atmosphere about the polar axis are

routinely available from a number of meteorological centers engaged in real-time weather

prediction. These estimates are a product of operational global numerical weather forecasting

models in which numerous atmospheric parameters, such as wind, pressure, and temperature

fields, are continuously being updated as large quantities of in situ and remotely sensed

meteorological data are assimilated into the model, Since these models are used to generate

ongoing weather forecasts for immediate distribution, the AAM values themselves are also

available with little delay, The U. S. National Meteorological Center (NMC), the United
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Kingdom Meteorological Office (UKMO), the European Center for Medium-Range Weather

Forecasts (ECMWF), and the Japanese Meteorological Agency (JMA) all produce estimates

of various AAM components every 12 or 24 hours. In addition, the NMC, UKMO, and

ECMWF utilize their models to predict the values of atmospheric quantities up to 10 days in

the future. These predictions are based on the current state of the atmosphere (after all extant

data have been assimilated into the model) propagated into the future taking into account as

many physical processes as is computationally feasible. Those AAM estimates that incorpo-

rate raw meteorological data obtained up to and beyond the epoch of the estimate are known

as AAM analysis values. Those AAM estimates made without any data yet available at the

epoch of the estimate are known as AAM forecast (AAMF) values.

Several sources of error affect all meteorological estimates of AAM. These include

limited geographic data coverage, finite atmospheric model thickness, and physical and

numerical model approximations. Raw meteorological data are gathered unevenly, with the

densest coverage available in the northern hemisphere and over continents. Large areas of

the southern hemisphere are without in situ data, as are upper levels of the atmosphere in the

tropics. Although these regions are being monitored through remotely sensed data from

weather satellites, the computed wind and pressure fields in these areas are more model

dependent since in situ data are lacking. Atmospheric models extend up to a small but non-

zero top pressure level, effectively excluding a portion of the stratosphere when computing

the atmospheric angular momentum. This can generate errors in AAM estimates of up to

10% on annual time scales [Rosen and Sal stein, 1985]. As dynamical forecasts of the atmo-

sphere are extremely sensitive to both model errors and small errors in the initial conditions,

errors in forecasting increase rapidly as the forecast interval grows, and all forecast ability is

lost after about 2 weeks [Rosen et al,, 1987 b].

In the normal operation of KEOF, the AAM and AAMF series producd by the NMC

are employed. Unlike the AAM data products of the other centers, the NMC data have been

available since 1985 on a daily basis by dialing up an NMC computer and transferring the

9



data via modem. The other centers have not, until recently, had such a real-time capability.

Use of data from these other centers in routine KEOF operations is under investigation, and

preliminary results have been reported elsewhere [Freedman and Dickey, 1991].

None of the centers that compute AAM include uncertainty estimates with their dis-

tributed AAM values. The JPL Kalman Filter requires realistic formal errors for all input

data types, however, including AAM. A number of studies have been performed to assess

the errors present in the AAM data [Rosen et al., 1987a; Gross and Eubanks, 1988; Bell et

al,, 1991; Gross et al,, 1991]. These have primarily involved intercomparisons of the AAM

time series of the various centers with each other and with LOD, From these and our own

studies, a nominal value of 0.05 ms has been chosen as the formal error for both the NMC

AAM analysis and forecast series. This nominal value is consistent with the RMS difference

between A AM series from different centers, but it effectively assumes an error structure for

the AAM that is uncorrelated in time. A recent study by Dickey et al. [1992] has shown that

the inter-center differences are, in fact, correlated over time, which suggests that a substan-

tially smaller white-noise formal error for the AAM data may be adequate, an option that is

currently under investigation. Ideally, we would like to obtain formal errors for each data

point directly from the numerical models of the meteorological centers, but in practice such

estimates are difficult, especially if the errors are correlated over time.

The AAM and AAMF values used in KEOF are derived from

of the zonally averaged zonal winds (the “wind” term), according to

the angular momentum

(2)

where Mw is the AAM from the wind term, a is the mean radius of the Earth, g is the accel-

eration of gravity, [u] (0, p) is the zonal mean zonal wind (the eastward component of wind

averaged over all longitudes in a particular band of latitudes and heights), @ is the latitude,

and p is the pressure level of the atmosphere, ranging from surface pressure (pS = 1000 mb)

to the upper pressure limit defining the top of the model (pU) [Rosen and Salstein, 1983;
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Eubanks et al., 1985]. For the NMC data used in KEOF, the upper pressure level is pu = 100

mb; hence, the top 10?40 of the atmosphere is ignored, and no attempt is currently made in

operational KEOF processing to correct for this missing portion of the atmosphere. Also

ignored are the effects on the total AAM of variations in atmospheric pressure (the

“pressure” or “matter” term). The exclusion of the stratosphere and pressure term is a result

of the historical development of the AAM data product distributed by the NMC. The early

A AM and AAMF estimates were only available for the wind term computed up to 100 mb.

Because a continuous data set is desirable for operational KEOF stability, this is the data set

still in operational use. Portions of the stratosphere (up to pu = 50 mb) and the AAM pres-

sure term are available from the NMC for more recent data, and their use is currently under

study. The net effect of these two error sources is probably less than 20%.

Relationship Between AAM and LOD

Assuming the total angular momentum of the Earth as a whole to be conserved (i.e.,

ignoring external torques), if the solid Earth experiences a change in its angular momentum,

this momentum must be transfernixl to or from another component of the Earth, such as the

atmosphere, ocean, or liquid core. Over decadal time scales, the Earth’s liquid core is

thought to play a significant role in this momentum exchange, but at time scales of a few

years (interannual) and less, the atmosphere is expected to play the dominant role. As men-

tioned above, the high correlation between LOD and AAM at interannual and shorter periods

has been demonstrated by many studies over the past decade [e.g., Hide et al., 1980; Rosen

and Salstein, 1983; Eubanks et al., 1985; Morgan et al,, 1985; Rosen et al., 1990; Dickey et

al., 1992]. Significant coherence is found between the two time series at periods down to 8

days, with lack of coherence at shorter periods apparently due to the declining signal-to-

measurement noise ratios of the data sets [Dickey et al., 1992]. Other possible locations for

momentum storage, such as the oceans, appear to play a minor role over these time scales.
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Assuming that the solid Earth exchanges angular momentum only with the atmo-

sphere and that the moment of inertia of the solid Earth remains constant, AAM and LOD are

related according to

A
~AMw = (1.67 XIO-B s2/kgrn2)AMWA  =  J2cm

(3)

where Q is the average angular rotation rate of the Earth and C. is the polar moment of iner-

tia of the solid Earth (crust and mantle) [Rosen and Salstein, 1983; Eubanks et al., 1985].

AAM is usually presented in time units using the conversion factor given in Eq. (3) (where

the values Q = 7.292x 10-5s-1 and C. =7. 10x 1037 kgm2 have been employed [Eubanks et

al,, 1985; Lambeck, 1988]).

between AAM and LOD can be seen in Figure 1. Figure 1aThe close relationship

displays a two-year time series of LOD (with a long-term trend and tidal lines removed)

together with that of the AAM wind term. Note the strong similarities between the two

curves. This is shown more concretely in the coherence plot of Figure lb (after Dickey et al.,

[1992]), where the agreement between the

days.

o

Fig. la
and 1 b Since high coherence exists between
near
here days, and both AAM and LOD exhibit substantial power at these longer periods (as seen in

the power spectral density plots described below), it is reasonable to employ AAM data as a

two time series is significant down to about 8

AAM and LOD at periods greater than about 10

proxy for LOD when geodetic data are lacking. At shorter periods, Dickey et al. [1992]

conclude that the signal-to-noise ratio of the AAM is superior to that of the LOD, suggesting

that the AAM data may even provide a better indication of the high-frequency variability of

true LOD than do the geodetic measurements of UT 1 (assuming no other reservoir for angu-

lar momentum storage), Thus, unless improvements in either geodetic or atmospheric data

sets suggest otherwise, AAM is both a reasonable proxy and useful supplement to geodeti-

cally derived LOD even for high-frequency fluctuations.
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When LOD variations are largest in magnitude, AAM could be especially important

for LOD and UT1 prediction. As seen in Fig. la, there are episodes of large and rapid LOD

change which are promptly and accurately matched by similar AAM variations. Since the

geodetic measurements that monitor these fluctuations often take several days to process, the

near-real-time AAM data can quickly capture this variability, and thus aid in predicting UT1

during these critical events.

In order to implement the Kalman filtering scheme described in the next section, we

need to develop stochastic models for the behavior of LOD, AAM analyses, AAM forecasts,

and their differences (e.g., AAM – LOD, AAMF – AAM, etc.). Eubanks et al. [1985] inves-

tigated the relationship between the AAM and LOD data available in the early 1980’s, con-

cluding that both AAM and LOD behave as random walk processes with the difference

between them also behaving as a random walk with about 1/10 the power of either AAM or

LOD individually, Later work by Eubanks et al. [1987] examined AAM forecasts, and pro-

posed an autoregressive model for the AAM forecast errors. These results are illustrated in

Figure 2, using operational NMC AAM analysis and forecast data from 1987.0 to 1991.0 and

a time series of LOD data generated by KEOF from the various geodetic data sets described

above. The stochastic models are formulated by careful analyses of figures such as these,

with an emphasis on capturing as accurately as possible the behavior of the modeled quanti-

ties both around the frequencies where measurement noise begins to corrupt the true signal

and at those periods most relevant for short-term UT1 prediction (5-20 days). Thus, spectral

models of the various noise components present in the data are also important [Eubanks et

al., 1985; Dickey et al,, 1992].

As seen in Figure 2a, the AAM and LOD time series possess power spectra that fol-

low an ~-z curve across a broad range of frequencies, ~, indicative of random walk behavior.

The power spectral density (PSD) of the white-noise stochastic process forcing the random

walk model for LOD is 0.0036 ms2/day. The power spectrum of the difference series

between LOD and AAM also approximately follows an $-z curve, with a much smaller
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white-noise PSD forcing of 0,0004 msz/day, Figure 2b shows a similar comparison between

the AAM analysis and 5-day forecast power spectra, Here, the difference is less like a ran-

dom walk, and can be better modeled by a first-order autoregressive process, In addition,

there is an empirically-measured bias between the AAM and AAMF time series that varies

with the AAMF forecast interval. These stochastic behaviors are incorporated into the JPL

Kalman Filter models described below,

3. KEOF Implementation

The JPL Kalman Earth Orientation Filter (KEOF) is a state-space, time-domain,

optimal linear filter [Gelb, 1974, for example]. Its purpose, structure, and implementation

are summarized in Morabito et al. [1988]. What will be described below is the general

implementation within KEOF of geodetic data types, and the detailed implementation of

AAM analysis and forecast data types.

State Equations

The linear stochastic model used to derive the filter can be described by:

~= Fx+o) (4)

where x is the state vector containing all relevant components, F is a constant coefficient

matrix describing the dynamics of the system, and o is a white-noise, zero-mean stochastic .

process vector, whose elements are statistically independent of one another. The state and

white noise vectors consist of the following:

:1

Table 2
near XT = (XY/L1p2Si ULpA b 

~F)

here (5)
OT=(() () ~, ~~ O @S O @. ~. 0 @

where all the variables are defkd in Table 2 and the superscript “T” denotes the vector

transpose. The first 6 elements of these vectors relate to polar motion measurement and

modeling. They are described in Morabito et al, [1988] and will not be dealt with further
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here, The last five elements describe the interrelationships among UT1, LOD, AAM analy-

sis, and AAM forecast data. Although they are dynamically separable from the polar motion

components, these five elements are not independent of the first six elements in practice

because certain geodetic data types do not measure UT1 independently of X and Y. TEMPO

and LLR, for example, sense components of Earth orientation (e.g., UTO, variation of lati-

tude) which are linear combinations of polar motion and UT1, while the multibaseline

NAVNET data possess full covariance matrices that relate UT and polar motion. Hence, in

practice, all eleven state vector components are, to some extent, correlated with each other.

Matrix F incorporates the relationship among the various state vector components.

The relationship between UT1 (U) and LOD (A) as modeled within the filter is:

dU— = - L
d t

(6)

dL—=fNL
d t

(7)

where L = A/A. with units of milliseconds per day represents a normalized form of LOD.

Since w represents a white-noise stochastic process, L behaves as a random walk (integrated

white noise) while U is modeled as an integrated random walk, Equation (6) is a restatement

of the definition of LOD (1) in terms of L. (If t is given in days, Ao = 1 and the magnitudes

of A and L are equal.) Equation (7) emerges from Figure 2a and studies such as Eubanks et

al. [1985] and Dickey et al. [1992], wherein the LOD, with tidal terms removed, appears to .

behave as a random walk over a broad range of frequencies. The AAM analysis (A) compo-

nent is described by:

A= L+PA (8)

(9)

where AAM differs from LOD by a difference term, P*, that also behaves as a random walk

but with a much smaller variance, as suggested by Figure 2a. Note that A is also normalized

15



(A s AAM/Ao) to be consistent with the definition of L, AAM forecast values (F s

AAMF/Ao) are modeled by:

F= A+p~+b (lo)

(11)

The AAM forecasts are treated as the sum of the true AAM, a constant bias term b, and an

exponentially decaying term p~ excited by white noise. Equation (11 ) describes a simple

first-order autoregressive model which follows the curve shown in Figure 2b reasonably well.

The exponential time constant is z,, determined empirically to be on the order of a few days.

For routine filter operation, T, is usually set to the AAM forecast lead time [Eubanks et al.,

1987]. Since the stochastic processes W, co~, and @ are independent, the state-vector quanti-

ties that they drive, L, p~, and p~, as modeled above are also independent, Estimates of these

quantities in the presence of data, however, are highly interdependent.

Jt should be emphasized that these stochastic models, and especially the model

parameter values themselves, are empirically determined and are a function of the data sets

employed. Hence, the models and parameter values need to be periodically reexamined and

adjusted as the data sets improve. The parameter values currently used in operational KEOF

processing are listed in Table 3, where Qi represents the power spectral density of the zero

mean, white noise process ~i.

Forward Kalrnan Filtering

The solution to equation (4) is given by

(12)

LTabl~
near
here—

x(t) = @(t – tO) x(tO) + j’@(t – ~) co(q) dq
to

where @(At) is known as the transition matrix and can be expressed as an exponential
CM ~k ~tk

@(At) = exp(FAt) = ~—
kd ‘!

(13)
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Equation (12) describes the evolution of the state vector with time, given the “system model”

for a Kalman optimal linear filter shown in (4) [e.g., Gelb, 1974]. The best estimate, ii, of

this state vector at time ti, in the absence of new measurements, is given by the propagated

Kalman state estimate

ii  =  @(ti  - ~i-1 ) ‘i-l (14)

for ?i.l < ti. This estimate is not affected by process noise but is a result solely of a determin-

istic model applied to the previous state estimate. The corresponding propagated state error

covariance matrix is

Pi= O(ti - ti_l ) ~i_l CDT(/i  - ti_l ) + ~,~, @(li - V) Q @T(fi - q) dq (15)
,

where Q is the process noise matrix (a diagonal matrix with elements Qi). The state covari-

ance matrix Pi includes both the effect of propagating the previous state error forward in

time (the first term on the right hand side of ( 15)) and the effect of adding process noise (the

second term), Appendix A contains the derivationof@using(13) and the evaluation of (15)

for the lower half of the state vector.

Ignoring polar motion components, (14) reduces to the following set of equations

Vi= Ui.l - AtLi-l

Li= Li_*

#A i= AA i-l (16)

b i = bi_l .
fl~l  =  Nf.i-l exP(-At/~l)

where At = ti – tij. Thus, in the absence of new data, the state vector components L, VA, and

b remain constant, while U and p~ behave as linear and exponentially damped quantities,

respectively. The effect of the exponential damping on p~ is that as At grows large, #F

approaches zero, and the best estimate of the AAM forecast becomes simply the AAM anal-

ysis value plus a bias, i.e., F + A + b.

Measurements are modeled as

z(f) = Hx(f) + V(t) (17)
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where z is the measurement vector or scalar at time t, v is the measurement noise vector or

scalar (assumwl to be white with zero mean), and H is the design matrix relating the state

vector to the measurements

H T =(hx hY hu hA h~) (18)

The h vectors are trivial for PMX, PMY, and UT1, and can be derived for AAM and AAMF

measurement types from equations (8) and (10). The latter three h vectors are thus

h U

T = ( O O O O O O I O O O O )

h~T=(OOOOOOOll OO) (19)

h,T=(OOOOOOOllll)

As measurements are collected, the state vector and state covariance matrix must be

updated to include the new data, The updated state estimate, essentially a weighted average

of the state and measurement vectors, is

k+ = ( ) [
P’i + HTR-]H ‘1 ~_-l ~_ + HTR-lz 1 = i- + P+ HTR-’[z – Hi-] (20)

where the “-” and “+” subscripts refer to quantities preceding and following, respectively, an

update with the new measurement z, R is the measurement error covariance matrix, and P+

is the updated state covariance matrix

Equations

using the Kalman

i+

k

P+ = (k’+ HTR-’H)-’ (21)

20 and 21 are usually represented in a modified form for Kalman filtering

gain matrix K [Gelb, 1974]:
.

=i-+K[z-Hi-] (22a)

= [1- KH]fi (22b)

[ 1K=~-HT H~-HT+R-l (22C)

Although this description is computationally more efficient than that described by

(20) and (21 ) since one matrix inversion is required rather than three and the dimension of

that one matrix is lower, “for the specific application discussed here, (22) is not ideal. The
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measurement covariance matrix R for certain geodetic data types may contain elements with

essentially infinite (i.e., unknown) values [Steppe et al,, 1992a, for example]; such an error

structure is better represented by the inverse covariance matrix R-l, known as the informa-

tion matrix, Because the state vector contains only 11 components, the computational work

involved in performing the additional matrix inversions does not significantly hinder opera-

tion of the filter.

Filtering in KEOF is a multi-step process. The state vector and state covariance

matrix are first initialized with a reasonable set of a priori values, These values are chosen

such that the state vector values will be close to the empirical values at the epoch that filter-

ing begins and the diagonal state covariance matrix will have elements sufficiently large to

allow the a priori state vector to quickly converge to the empirical value when measurements

become available, The state vector and covariance matrix are then propagated using (14) and

(15) to the next event time. This event maybe either a print time or a measurement epoch.

At a print time, the current state vector and covariance matrix are written to an output file. If

the event is a new measurement, a data update is performed using (20) and (21). Additional

updates occur if other measurements exist at that epoch, otherwise the filter propagates to the

next event, If the print time and data epoch are simultaneous (to within a small fraction of a

day), the data update is performed before the state vector and covariance matrix are output.

During the propagation process, stochastic excitation adds uncertainty to the state

covariance matrix. According to the model developed in Appendix A, if the state were

known exactly at time t = O, the one-sigma error estimates would grow with time as follows

(with t measured in days):

CJu = 0.0351% ms

CL = 0.060 t~ ms / day

V4 = 0.020 t% ms / daya

cr~=Oms/day f ,,

(23)

YOF = 0.075 [1 – exp(-O.4t)] 2 ms / day =
{

0.047 tfi ms / day (fort small)
0.075 ms / day (for t large)
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Thus, modeled UT1 error estimates grow as t 3/2, increasing very quickly for times longer

than a day or so, while modeled LOD, AAM, and AAMF uncertainties grow as t 12, quickly

at first but less rapidly after a few days. The result in (23) implies that if UT 1 and LOD were

known perfectly at some moment, then, in the absence of additional data, the uncertainty in

the predicted value of UT 1 would exceed the current DSN UT 1 requirement of 0.6 ms after

about 6.5 days.

Backward Kalman Filtering and Smoothing

For prediction of Earth orientation components, the Kalman filter need only be run in

the forward direction, i.e., by assimilating data in chronological order, using stochastic mod-

els to extrapolate the series forward in time. To create an optimal smoothing, the Kalman fil-

ter must also be run in reverse chronological order; this “backward” time series is then vector

weighted averaged with the “forward” time series on a point by point basis to generate an

optimally smoothed estimate at each output time point. In this averaging scheme, care must

be taken that input data are not used twice in the estimate. Thus, if a measurement at some

epoch has already been used in forward filtering to produce an estimate at that epoch, the

backward filtering must output an estimate for that epoch prior to assimilating the measure-
.,

ment. In backwards filtering, therefore, when a print time and data update time coincide, the

output is generated before any measurements at that time are used to update the state.

A number of modifications occur to the Kalman filtering scheme in backward filter-

ing. Although all the data update equations remain the same (17-22), the propagation equa-

tions change slightly. These changes are discussed in Appendix B, The most obvious is the

change in the modeled estimate and propagated uncertainty of the ~p component. Applying

(B5) to (B3), the propagated estimate of AF is

MFi  =  flFi-1 ‘xP(lAfl/T/) (24)

which grows exponentially large as At increases. The portion of the propagated & uncer-

tainty due to process noise (B7) is
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= 0.075 [exp(O.4t) – I]fi ms / day =
{

0.047 ?X ms / day (fort small)c7F (25)
+00 (for t large)

while the error propagated from the previous estimate (B6) also grows as [exp(0,4t)] 112. In

contrast with forward filtering, the p~ estimates and uncertainties in the backwards filter will

grow exponentially large over time without AAMF data to constrain them to finite values,

The computational problems due to such large numbers are overcome in practice (if, for

example, forecast data are not used) by setting the time constant q to a large value.

The smoothed series is a weighted average of the forward and backward filterings.

Thus

(
A

immtid = P;l + P~l ) [
- 1  

‘-laPf Xf +P;’  ib 1
( )P,mow = iy + P;l ‘1

(26a)

(26b)

where the “f” and “b” subscripts refer to the forward and backward filter output, respectively.

Filtering Examples

The portion of the Kalman filter designed to deal with UT1 and LOD incorporates

information from three raw data types-geodetic UT1 and meteorological AAM analysis and

forecast data—within five state vector components: U, L, PA, b, and p~. Having described

the models for these components within KEOF, it is illustrative to examine how the input

data are dealt with in practice by the filter, Two different sets of examples are presented

below. In the first, synthetic sets of data are used as UT1, AAM, and AAMF input data.

These three data sets are formed using simple analytic functions, chosen to highlight the

influence on the filtered output quantities of each individual data set. The second set of

examples uses true geodetic and atmospheric data to qualitatively illustrate the filtering and

smoothing performed by KEOF.

Figure 3 shows the three synthetic raw data sets used in the tlrst example, together

with their defining expressions. The UT1 (Fig. 3a), with a one-sigma formal error of

0.02 ms, varies linearly with time, the AAM analysis series (Fig. 3b) consists of a bias term
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and a slowly varying sinusoid (with o = 0,05 rns), while the AAM forecast data (Fig. 3b) are

IIFig. 4a
and 4b
near
here

:1Fig. 4C
and 4d

near
here

similar to the AAM analysis data but differ by a small bias term and an additional low-ampli-

tude, high-frequency sinusoid, All data sets contain points with daily spacing. To illustrate

the effects on the filtered solution of the addition and deletion of the various data types, the

data sets are staggered in time such that the UT1 data begin on January 1 and end on August

31, the AAM analysis data begin and end two months later (March 1 and October31, respec-

tively), and the AAM forecast data, two months later still (May 1 and Decem&x 31; since

these are five-day forecasts, however, their time tags actually run from May 6 to January 5).

The smoothed estimates and formal errors for UT1, LOD, AAM, and AAMF gener-

ated by KEOF are shown in Figure 4. The smoothed UT1 series (Fig, 4a) accurately reflects

the input UT1 data until September when the raw data cease. The UT1 behavior is subse-

quently governed by the filter’s estimate of integrated LOD, which, in turn, is now controlled

by the AAM analysis and forecast data. The UT1 formal errors (Fig. 4b) reflect this

changeover, and increase by 3 orders of magnitude over the final four months due to the

stochastic model’s estimate of the growth in uncertainty of ~* and L.

The estimated LOD and its formal error (Figs, 4C and 4d) remain fairly smooth over

the time interval in which the geodetic UT1 data are available and are only perturbed slightly

by the addition of the atmospheric data sets in March and May, but the subsequent LOD

behavior after the geodetic data are exhausted is closely controlled by the atmospheric data.

The filtered values for the atmospheric time series (Fig. 4c) agree well with their correspond-

ing raw data sets when these data are available, but are controlled by the most closely related

existing data at other times, For example, in the first two months when geodetic data alone

are available, both atmospheric quantities behave similarly to LOD, albeit with a constant

offset, while in November and December when only AAMF data exist, both LOD and AAM

estimates incorporate the high-frequency structure of the AAMF series. The formal errors

(Fig. 4d) successfully reflect the amount and type of raw data going into the estimates for

each component, however, with the errors dropping as more closely-related data types
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become available and rising as these data cease. If no raw data are available (see the last two

months in Fig. 4), the estimated quantities and their uncertainties vary according to the

stochastic propagation models described above.

Figure 4 illustrates the properties desired for a sensible combination of geodetic and

atmospheric data types, When geodetic data are available, the smoothed geodetic series is

consistent with these data, even if concurrent atmospheric data behave inconsistently. When

geodetic data are not available, the geodetic parameter estimates are controlled by whatever

data types do exist, namely, the atmospheric data.

In the second example of KEOF performance, a set of real geodetic and atmospheric

data (as listed in Table 1) were employed, These were operational data sets, in that they were

adjusted according to the following procedure. Prior to filtering the data, the various geode-

tic data sets were compared with a reference UTPM time series aligned with that of the IERS

[Gross, 1992; IERS, 1992a]. A bias and rate were removed from each time series to render

them consistent in their long-term behavior with the reference series, In addition, the formal

errors of each geodetic data set were adjusted so that the normalized chi-squared value of the

data residuals with respect to a smoothing incorporating all other data sets was near to unity

[Sung, 1992]. The formal errors of the

explained above.

A number of characteristics of the

atmospheric data are assumed to be 0.05 ms, as

KEOF filtering and smoothing of the raw data are

illustrated in Figure 5, where the residuals of the input data with respect to the smoothed

KEOF output are shown for the UT1 component, together with the formal errors on both the

input data and smoothed output, Only the IRIS and NAVNET VLBI data are shown, since

only these series report UT 1 values which are used by KEOF directly. The RMS scatter of

the data residuals is comparable in size to the formal error of the input data, indicating that

the smoothed values generally lie within the one-sigma error bars of the raw data. For the

UT1 component, the formal error of the smoothed series is about half that of the best-quality

measurement data input into the filter. Note that the relative values of input formal error,
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smoothed formal error, and the raw-minus-smoothed residual are variable and depend on data

type, data spacing, stochastic model parameters, and other characteristics of the data and

model.

Although the primary purpose of incorporating atmospheric data into the filter is to

improve predictions of UT1 and LOD when geodetic data are absent, the addition of AAM

and AAMF data affects the estimates of UT1 and LOD even when geodetic data are present.

To ascertain whether this effect is significant in practice, two filter runs were performed, one

using only geodetic data, the other with both AAM and AAMF data sets included. The dif-

ferences between the filtered estimates for both the UT1 and LOD components are shown in

Figure 6. Also shown are the formal errors for these components from the geodetic-plus-

atmospheric-data filter run. (Note that the formal errors from this run are always less than

the formal errors for the geodetic-data-only run, since additional data can only add strength to

the smoothed solution.) The differences between the two filter estimates are, for the most

part, less than 0.04 ms in magnitude for UT1 and 0.03 ms for LOD, with RMS scatter of

0.019 ms and 0.011 ms, respectively. These differences are within the one-sigma formal

error bars (-0.04 ms) of the estimates. Thus, UT1 and LOD series generated with AAM data

are among the family of solutions permitted by the series generated without AAM data, and

vice versa.

The differences between the two series will increase if the formal errors of the input

atmospheric data are reduced, since the AAM would then have a stronger influence on the -

LOD estimates. Tests with the AAM input formal error set at u = 0.005 ms still yield RMS

scatters of 0.03 ms and 0.02 ms for UT1 and LOD, respectively, comparable to the one-sigma

output formal error of 0.03 ms. Hence, adding AAM and AAMF data to an already dense

mix of geodetic data does not affect the resulting filtered UT 1 and LOD solutions to a statis-

tically significant degree; these data types only play a prominent role when the geodetic data

become sparse or significantly degraded in quality.
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type was to aid in the predic-

analysis and forecast data do

4. UT1 and LOD Prediction

Since the original goal of incorporating AAM as a data

tion of UT1, the ultimate test of our method is whether AAM

indeed improve real-time prediction, Two methods are being used to evaluate the effective-

ness of including AAM data, One method is to perform periodic spot checks of the opera-

tional predictions by estimating and predicting UT1 both with and without the AAM data.

The other method uses a version of the filter that automatically performs a set of case studies

to examine the effects of including AAM data for a large number of filter predictions. Since

this latter method yields more reliable statistics, results obtained from a set of simulated

operational filter runs are shown below.

The version of the Kalman filter that performed this work has been described in

Freedman and Dickey [199 1]. It uses the same smoothing and prediction algorithms as

KEOF, but automatically splits up a long time series of data into equal length subsets to use

to predict UT1. The result is a series of predictions that simulate the operational functioning

of the filter. A reference “truth” series is also generated, and the prediction and reference

series are difference. The resulting series of prediction errors are combined to yield an

estimate of the prediction error magnitude as a function of time since the filtering epoch.

3

Xg. 7
near The procedure for generating these case studies is shown schematically in Figure 7.
here—

The reference series is produced with geodetic data only, and consequently depends mostly

on the IRIS intensive VLBI data for short period UT1 and LOD behavior. The prediction or
.

“test” series uses the same geodetic data together with AAM analysis and AAM foreeast data

sets, In this series, however, all the data are not used. A series of filtering epochs are defined

about which the data sets are decimated to simulate the quantity and frequency of data of

each type that would normally be available for an operational filter run. Thus, no IRIS VLBI

data are available within about 10 days of the filtering epoch, while AAM analysis data are

available up to the time of filtering. Note that AAM forecast data are available beyond the

filtering epoch, since they are forecasts that were made and disrnbuted before the time of fil-
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tering, The length of time between the last possible data point of a particular type and the

filtering epoch is listed under “Typical Availability” in Table 1.

At the filter restart times shown in Figure 7, the full Kalman state vector and covari-

ance matrix previously generated from a forward filter run using all preceding data are read

from a disk file and used to restart the filtering process. Filtering continues forward in time

with the subsequent, reduced set of data until the end of that filtering cycle, typically a 30-

day time period. The backward filter then commences with the last measurement from the

reduced data set, either geodetic or atmospheric, and continues backward in time until the

start of that cycle. The two series are then vector weighted averaged to yield the prediction

series for one cycle. The filter continues by reading in the state and covariance matrix for the

next cycle. In the discussion that follows, all the prediction cycles are 30 days in length, with

the filtering epoch occurring on day 20 of the c ycle; hence, a 10 day UT 1 prediction is gener-

ated.

The prediction series for each cycle is difference with the reference series over the

same time span, generating a time series of prediction errors for each cycle. One indicator of

filtering accuracy is the RMS error at each day in the cycle, obtained by summing over all the

cycles:

[)
~MJ4

Em, i =  
~~Ej,i2

j=l
(27)

where i is the day number in the cycle (i = 1, . . . . N, for cycles of N days), and j is the cycle

number (with the test series consisting of M cycles). The difference between the test value

and the truth value on day i of cycle j, ~j,i, is obtained by

& . = hT(xP -Xr)j,iJJ
(28)

where XP and Xr are the prediction and reference series state vectors, respectively>  and h is the

vector that extracts that component or combination of components of interest from the differ-

ence vector (see, e.g., equation (19)), These RMS errors will be used to evaluate prediction

accuracy in the studies presented below.
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A number of caveats should be mentioned regarding the multiple case-study tool and

the interpretation of the following figures The case-study tool defines fixed epochs for run-

ning the filter to generate UT1 predictions, regardless of the data actually available at that

epoch. In real operation, however, the operator may choose to run KEOF only when a new

TEMPO measurement becomes available, In the case studies, for example, the last available

TEMPO point usually lies between days 13 and 17 of the cycle, whereas in KEOF operation,

a TEMPO point usually occurs on the equivalent of day 16 or 17 of the cycle. Thus, TEMPO

data may play a more important role in actual filter operation than is suggested by the results

shown below. Moreover, the data elimination strategy chosen (i.e., the “Typical Availabil-

ity” of Table 1) assumes that the filter is run immediately after the weekly delivery of the

non-TEMPO geodetic data types. In practice, geodetic data other than TEMPO may be sev-

eral days older than assumed here (although recent, more timely, NAVNET data may be sev-

eral days younger than assumed), ma.ldng the actual importance of TEMPO and AAM data

even greater than is suggested by this simulation study.

The role of atmospheric &ta

We have generated three case-study prediction time series, in which (1) only geodetic

data were used to predict UT1, (2) AAM analysis data were used along with the geodetic data

to predict UT1, and (3) both AAM analysis and 5-day forecast data were used to augment the

geodetic data. The time series consisttxl of 4.5 years of data running from the beginning of

1987 to mid-1991, sufficient to form 55 cycles of 30 days length for the case study. Each

series was difference with a reference UT 1 series created by filtering and smoothing the

geodetic data only in the standard KEO Filter. These geodetic data sets had their biases,

rates, and formal errors adjusted prior to filtering, as described in the previous section in

regard to Figure 5.

[1

Fig. 8
near Figure 8 shows a one-year segment of these difference series. Although the magni-
here

tude of the UT1 errors in Figure 8a vary with time, and no one series always possesses the

smallest errors, it is clear that the geodetic-data-only series yields larger errors than the two
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series incorporating atmospheric data. A similar conclusion may be drawn from the LOD

error series of Figure 8b. Note that the LOD error series are noisier than the UT] error

series, a result of UT1 being the integral of LOD and integration being a smoothing opera-

tion.

The RMS prediction errors for the three series are shown in Figure 9. The geodetic-

data-only series errors begin to grow well before all the geodetic data are exhausted, diverg-

ing from the geodetic-plus-AAM curves more than five days before the filtering epoch in the

case of UT 1 (Figure 9a), and even earlier for LOD (Figure 9b), Note that the growth in error

when geodetic data only are filtered is consistent with the growth expected due to the

stochastic excitation of the UT1 and LOD terms in the absence of data. By the time of the

filtering epoch, the geodetic-plus-AAM series exhibits UT1 errors almost 0.5 ms smaller than

those of the geodetic-data-only series. Given a DSN-required level of real-time UT1 accu-

racy of 0.6 ms, it appears that this goal can only be achieved if AAM data are employed.

Including AAM forecast data does not produce significant benefit until three days after the

filtering epoch, but it improves the UT1 estimate by up to 0.4 ms for a 10-day prediction.

The differences between the various curves are even more pronounced in the LOD

component (Figure 9b), and the structures of the curves help to reveal the processes that

influence the filtering, For example, errors in all the curves begin to grow as the high-preci-

sion IRIS and NAVNET multibaseline data drop out of the picture (day 6 in cycle). After the

daily IRIS intensive data drop out (day 10 in cycle), the effect of daily AAM data can be -

seen. The geodetic-data-only curve continues to grow at a rate consistent with the random-

walk model for LOD behavior, although it is somewhat constrained by the presence of

TEMPO data. The curves incorporating AAM data show much smaller errors due to the

constraints provided by the daily AAM, As the geodetic-plus-AAM analysis data curve loses

its data (at day 19 in cycle), its error begins to grow at a rate similar to that of the geodetic-

data-only error curve. Including AAM forecast data appears to significantly improve the

prediction of LOD from the filtering epoch onwards,
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This improvement in UT1 and LOD prediction due to the addition of AAM data to

the current mix of geodetic data types appears to be robust. Similar results are seen with dif-

ferent time spans of data and different cycle lengths, The actual magnitudes of the RMS

prediction errors can vary significantly depending on the time period considered, but the rela-

tive improvement provided by including AAM data remains substantial.

Figure 9 presented the prediction error aggregated over many cycles. For any indi-

vidual cycle, this error may be significantly larger or smaller. This is illustrated in Figure 10,

where the UT 1 prediction errors at the filtering epoch (day zero) and at five days after the

filtering epoch are shown for each cycle, for both geodetic data only and geodetic plus AAM

and AAMF data, For day zero, errors are usually under 1 ms if AAM data are employed, but

often exceed 2 ms without AAM. For day five, these numbers increase by a factor of two.

Note, however, that even for predictions for day five made using geodetic data only, many

cycles show errors of 0.5 ms or less. There is a hint of a seasonal effect on the errors, with

larger negative errors seen around July and, when AAM data are included, around January

also. Positive peaks tend to occur in October and April, This seasonality may be related to

the variability of LOD, which tends to have millisecond-level jumps preferentially occurring

at certain times of the year (see, e.g., Figure 1).

The role of geodetic data

We also investigated the quality of UT1 and LOD predictions whim particular geode-

tic data sets were absent, but with atmospheric data included. The most influential geodetic

data types for UT1 prediction (in an operational mode) are the TEMPO VLBI and the IRIS

intensive data sets, as they provide the most timely information about the UT 1 component of

Earth orientation, In Figure 11, these two data sets have alternately been deleted, Clearly,

removing TEMPO data harms the estimate and prediction of UT1 and LOD after the IRIS

intensive data become unavailable (day 10), whereas deleting IRIS intensive data only affects

the higher-precision estimates generated prior to day 10 when all data types are still avail-
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able. This plot illustrates well the need for a rapid-turnaround geodetic technique such as

TEMPO in real-time UT1 estimation, even when atmospheric data are used.

The benefits of more rapidly available geodetic data for both UT1 and LOD predic-

tion are illustrated in Figure 12. The shortest turnaround times that the various techniques

sometimes achieve are shown in the rightmost column of Table 1, next to the typical

turnaround times for each data series, The prediction errors obtained with these rapidly

available geodetic data and those resulting from typical data turnaround times are shown in

the figure. Rapid geodetic data turnaround makes a substantial difference in UT1 and LOD

prediction accuracy when atmospheric data are absent. With AAM analysis and forecast

data, timely geodetic data again improve both the estimates and forecasts, but the level of

improvement is smaller. Furthermore, from about day 20, the UT1 estimates made with

standard turnaround geodetic data plus AAM analysis and forecast data are superior to those

made with rapidly available geodetic data but without AAM, Hence, AAM data help to alle-

viate the urgency of obtaining the most timely geodetic data possible and the difficulties aris-

ing from occasional geodetic data outages.

A comment should be made regarding a phenomenon present in the LOD prediction

error plots (Fig. 9b, 12b, and in particular, Fig. 1 lb) and, to a lesser extent, in the correspond-

ing UT1 plots, This is a “ripple” effect in the prediction error curves, where errors of LOD

(and UT1) appear to get worse, then improve, even after individual data types drop out. This

rippling is a byproduct of both sparse data and correlations between state vector components,

as well as, to some extent, the true variations in Earth rotation. To illustrate with a simple

example, if UT1 measurements are only available every 5 days, errors in UT1 will be largest

midway between the data points (as seen in the “no-IRIS intensive” curve of Fig. 1 la prior to

day 15). Similar behavior occurs for LOD, but since LOD is proportional to the time deriva-

tive of UT1, the errors reach their minima midway between UT1 points and their maxima at

the times of the UT1 measurements (Fig. 11 b).
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These simulation studies demonstrate the benefits of employing AAM analysis and

forecast data in predicting UT1 and LOD, even when the most timely geodetic data are avail-

able. Since AAM quantities are evaluated daily, they provide valuable information on the

day-to-day variability of Earth rotation, especially important after the daily IRIS intensive

data are no longer available. As geodetic data types drop out, the AAM data remain the only

source of information on the longer period, larger amplitude LOD variations that have a sub-

stantial impact over five-to-ten days. These daily AAM measurements are thus a useful

complement even to TEMPO, which are the timeliest geodetic data but are only available

every three or four days and monitor UTO and variation of latitude rather than UT1 directly.

Even if a daily geodetic measurement of UT1 were available in real time, such as that envi-

sioned from the Global Positioning System (GPS) [Freedman, 1991; Lichten et al., 19921,

AAM analysis and forecast data sets would still be useful as an independent estimate of the

high-frequency behavior of LOD and as a predictor of its future behavior, respectively.

Formal uncertainties versus true errors

An important advantage of the Kalman filtering approach to data combination and

prediction is the ability to provide formal uncertainties for the resulting estimates. It is desir-

able to assess the accuracy of these uncertainties by comparing them with actual errors. We

have chosen to illustrate this comparison through the use of a quality factor, ~, representing

the square of the true error divided by the predicted variance as a function of day in the pre-

diction cycle. The# value on day i in the cycle is thus defined to be

~ ~ ~[h(xp-xr)j,i~

=  z j=, h(p,  + p,)j,ihT
(29)

The numerator is the square of the desired component of the difference series (the ~,i defined

in (28)) and the denominator is its approximate variance (approximate, because the prediction

and reference covariance matrices are not independent).
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Figure 13 illustrates these~ values for the three series shown in Figs. 8 and 9 for both

UT1 and LOD components. Since nearly the same data are used in the prediction and refer-

ence smoothing early in a cycle, the~ values for the first half of all the curves are small. As

the geodetic data drop out (between days 5 and 17) the Y values rise to levels reflecting the

square of the ratio between prediction error and prediction uncertainty. Furthermore, early in

each cycle, the predicted and reference formal uncertainties are similar in magnitude, while

towards the end of the cycle the predicted variances will dominate in the denominator

(29).

The time period between day 15 and day 30 in the cycle (the last five days

of

of

smoothing and first 10 days of prediction) is most critical for near-real-time knowledge of

Earth rotation, and this period exhibits the largest differences among the three curves shown.

The geodetic-data-only case appears to be modeled best according to this test, as its} values

never exceed -1.2, This implies a ratio of true error to predicted error of about 1.1.

Although the geodetic-data-only prediction errors are substantially larger than those of the

other two curves (see Fig. 9), the predicted uncertainties grow sufficiently fast to hold} close

to one.

Alternatively, equation (29) can be looked at as a statistical measure of model accu-

racy. Assuming the predictions on corresponding days in different cycles to be independent

and the statistical models presented above to be valid, (29) also represents a normalized chi-

squared ( ~2 ) estimate of model accuracy. With 55 cycles in the 22 computation, the proba-

bility of seeing a ~2 value of 1.2 or greater is about 15%. Thus, the stochastic model for the

behavior of UT1 and LOD within KEOF appears to accurately describe the true behavior of

these quantities, yielding reliable uncertainty estimates.

When AAM analysis and/or forecast data are included, they values are larger. The

UT1 curve containing A AM forecast data reaches a maximum of about 2, denoting actual

prediction errors about 1,4 times their formal uncertainties. The UT1 curves yak ne~ the

times of the last atmospheric data pointi similarly, the AAM forecast curve for LOD has a
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sharp peak at day 23 while the AAM analysis curve shows a more subdued peak at day 18,

one day before the raw data cease for each curve. These peaks are evidence that the atmo-

spheric data restrict the growth in the formal prediction uncertainty more effectively than the

growth in the actual prediction error. The probability of obtaining a ~2 value this Iarge is

vanishingly small, implying that there is room for improvement in our modeling of the

stochastic processes for AAM and AAMF.

Although prediction intervals longer than 10 days were not examined here, the trends

of all the curves in Fig. 13 suggest that for periods beyond 10 days (i.e., as the effects of the

AAM data fade), the # values remain between 1.0 and 1.5. Thus, they denote prediction

errors no more than 2570 greater than their formal uncertainties.

These results suggest that the stochastic models and/or process noise levels of AAM

and AAMF need to be modified if formal uncertainties accurate to better than a factor of 1.4

are desired for prediction times of several days. An improved model would either reduce the

prediction errors or increase the formal uncertainties, the former option being preferred from

the standpoint of prediction accuracy, of course. Currently, however, KEOF uncertainty

estimates for larger prediction intervals (and predictions made without atmospheric data) are

consistent with actual prediction errors.

KEOF verw the IERS Rapid Service

The JPL Kalman Earth Orientation Filter was designed to provide a real-time Earth

orientation prediction capability as accurate as possible. The development of the TEMPO

VLBI system and the implementation of AAM analysis and forecast data were intended to

provide a superior UT1 short-term prediction capability. Other estimates and predictions of

UT1 are available, however. The most timely of these are the predictions of UT1 provided

by the IERS Rapid Service [McCarthy and Luzum, 1991; IERS, 1992a]. A comparison of

the UT1 predictions distributed by the Rapid Service in IERS Bulletin A and the correspond-

ing KEOF predictions is shown in Figure 14 for a six month period in 1992.
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11Fig. 14 Three curves are shown in which: a) the operational, twice-weekly KEOF predictions
near
here of UT1 are difference with the (after-the-fact) Bulletin A smoothing, b) weekly KEOF UT1

predictions are difference with the Bulletin A smoothing, and c) weekly Bulletin A predic-

tions are difference with the Bulletin A smoothing. Operational KEOF predictions are

usually made on Tuesdays and Fridays, while Bulletin A predictions are generated on Thurs-

days, immediately after the weekly deliveries of geodetic data from the various analysis cen-

ters. The weekly KEOF predictions made on the following Fridays employ the same geode-

tic data except for (usually) one additional TEMPO point plus AAM analysis and forecast

data. The weekly KEOF runs on the subsequent Tuesdays include only one additional

TEMPO point, together with daily AAM data.

As Fig. 14 shows, the KEOF predictions are usually more accurate than the IERS

Bulletin A predictions both for the twice-weekly operational KEOF runs and for weekly

KEOF predictions made with the same frequency and at nearly the same time as those of the

Rapid Service. The RMS scatters of the KEOF predictions minus the Bulletin A reference

smoothing (after removing mean differences) are 0.49 ms (twice-weekly) and 0.77 ms

(weekly), while the RMS scatter for the Bulletin A predictions minus the Bulletin A

smoothing is 1.26 ms. This superior performance is at least partially due to the inclusion of

AAM and more timely TEMPO data in the KEOF solutions, and may also be a result of the

different UT1 models and prediction strategies employed. It is also clear from Fig. 14 that

twice weekly predictions provide substantial improvement over those made once per week. “

5. Concluding Remarks

We have shown that, for the purpose of near-real-time estimation and short-term pre-

diction of UT1 and LOD variations, meteorologically-determined atmospheric angular

momentum information is an important adjunct to geodetic measurements of Earth orienta-

tion, Both AAM analysis and 5-day forecast data have a significant impact on the ability to

estimate and predict UT1 and LOD using the JPL Kalman Earth Orientation Filter, particu-
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larlywhen dense geodetic data are lacking. The AAManalysis dahareof greatest value

from the time when daily geodetic estimates of UT1 cease through the epoch when the filter

is run, while the AAM forecast data are of benefit from the filtering epoch onward. Where

dense and high quality geodetic data are available, the AAM data with their currently

assumed formal errors do not provide any statistically significant improvement, although

they do provide an independent check on the overall high-frequency variability of LOD.

Inclusion of AAM analysis and forecast data improve UT1 and LOD predictions even though

there is evidence that the stochastic AAM and AAMF models currently used in KEOF may

not be optimal. Improvements in these models are currently being studied and should soon

lead to even better UT1 and LOD predictions.

TEMPO VLBI data are a critical geodetic data set for near-real-time knowledge of

UT1 due to their rapid turnaround time, Future rapid-turnaround geodetic measurements of

UT1, perhaps from GPS, may improve our prediction capabilities even further. Even with

rapid-turnaround geodetic data, however, AAM data will be of benefit for UT1 and LOD

prediction.

Ongoing research in a number of areas may lead to improvements in our filtering

capabilities, Most of our present knowledge of UT1 and LOD behavior at periods of a few

days is derived from studies of the IRIS intensive VLBI data. The errors in these data can

best be ascertained by comparison with independent observations, few of which exist, how-

ever. In addition, sub-daily variations in UT1 may alias into the IRIS intensive series due to ‘

the one-hour measurement time span and near-daily spacing of the data. Comparisons are

now being performed with independent VLBI and GPS data [Herring and Dong, 1991;

Lichten et al., 1992]. High-frequency variations in UT1 due to diurnal and semidiumal ocean

tides are being incorporated into the preprocessing and study of the IRIS data and into an

R&D version of the filter [Gross, 1992]. These investigations should yield improved knowl-

edge of the true behavior of the Earth’s rotation at periods shorter than about 10 days.
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The AAM data sets are also subject to a variety of errors, Improvements in the physi-

cal and numerical models of the global meteorological forecasting software are constantly

occurring, sometimes having profound effects on the resulting AAM estimates and forecasts.

There are known deficiencies in the temporal and spatial distribution of the raw meteorologi-

cal data used in operational weather forecasting, Some of these may be alleviated in the

coming years by new satellite remote sensing tools. For example, our knowledge of winds in

the southern hemisphere and high in the atmosphere should soon be improved by instruments

in orbit. There are also a number of unresolved issues dealing with the use and reliability of

currently available estimates of stratospheric AAM and the AAM pressure terms; these are

presently under investigation [Freedman and Dickey, 1991, for example].

The filtering scheme incorporated within KEOF must reflect the changing character

of the raw data sets used. To this end, studies are regularly being performed to assess the

corrections, such as biases, rates, and error scaling, that may need to be applied to the raw

data. In addition, we are currently reevaluating the stochastic models for the various UTPM

components, using the most recent data sets. Finally, as atmospheric data are becoming

available in near-real time from other meteorological centers, it may be beneficial to switch

to a different AAM series or combination of series better

Appendix A

This appendix contains the explicit derivation

suited as a proxy LOD data set.

of some of the more complicated

matrices used in forward filtering. Appendix B contains similar quantities for the backward

filter. Only the final five elements of the vectors and final 5x5 elements of the matrices will

be presentcxl here, as the first six elements which are associated with polar motion have been

described elsewhere [Morabito et al., 1988; Gross et al., manuscript in preparation]. From

equations (5-7), (9), and (11 ), equation (4) can be expanded to
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dx=
dt

=Fx+co=

o -1 0 0 0

0 0 0 0 0
0 0 0 0 0

( 0 0 0 0 0
0 0 0 0 -T;’ J

+

o
O)L

6.)A

o
(l)F

Using the F matrix given above, the transition matrix@ can be derived using (13)

(1 -At O 0 0)
0 1 0 0 0 I

I“Fk Atk O 0 1 0 0
@(At) = exp(FAt) = ~—

k=o~!=ooolo

0 0 0
( )

0 exp ~
I 1

(Al)

(A2)

where At = ti – Ii.l. This matrix multiplied by the state vector estimate according to (14)

yields the propagated state components listed in (16).

The propagated state error covariance matrix (15) can be broken into two parts: the

previous covariance matrix propagated forward in time, and the added excitation due to the

process noise models. If the previous covariance matrix were diagonal (usually only true of

the a priori covariance matrix), propagation would yield

[

0:0000
00: 0 0 0

@(At) fii.,  CDT(At) = @(At) O 0 +A O 0 @T(At)

o ’
0

0

0 ’  0 0 0 ; o

0 0 0 ( /’).-2 AtO cr~, exp ~,

(A3)

Only the uncertainties in UT1 and the AAM forecast Q&) change with time. This pattern of

time dependence remains even for a full covariance matrix; thus, only the U and #F variances

and covariances of a propagated state covariance matrix are functions of time.
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The stochastic model adds noise to the system according to

~’i @(t, -q) Q @T(~i - ~) dqti.,

QL(ti - q)’ -QL(?i  -~) o 0 0

-QL(li --n) QL O 0 0
0 0 Q. o 0

II o 0 0 0 0

J[ o

Ii.,

o [1-2(t. - q )
O 0 Q~exp ~

/

o

+2 Q,At  O 0 0
= o 0 Q A At O 0

0 0 0 0 0

0 0 0 W-exp[+]

dq

(A4)

All the uncertainties except that for the b term are functions of time. The only off-diagonal

terms produced are the cross-correlations between UT1 and LOD. When the operational

KEOF values for Qi from Table 3 are inserted in (A4), the error sigmas shown in (23) are

produced.

Appendix B

This appendix discusses the main differences between forward filtering and backward ‘

filtering. The system model for a backward Kalman filter maybe derived from the forward

model (equation 4) by defining a new time variable g, where [Gelb, 1974]

g= T-t (Bl)

In forward filtering t goes from O to T, while in backward filtering t goes from T to O.

Therefore, the new variable g runs from O to T in backward filtering, just as t does in forward

filtering, The new system model is
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4) = dx($) d? = dx(g)—  . - —  =  -Fx(g) - o(g) = F’x(g)+ d(g)
dc

(B2)
dt d~ dt

The final form of (B2) is identical to (4), with F replaced by F’ and co replaced by (J.)’. Thus

equations (14) and (15) become in backward filtering

ii = @’($i – ~i.1 ) ‘i-l (B3)

and

pi= @’(~i _ ~i-l) Pi-l @’T(gi _ ~i_l)+ J:, @’($i - a) Q ~“(~i - A) da (B4)

where gi.l < gi. Note that Q‘ = Q, because the power spectfal density of –@ (5) is the same as

the power spectral density of@ (t).

In parallel with equations (A2), (A3), and (A4), the backward filter yields

@’(Ag) = exp(F’Ag)  = exp(F(-Ag)) =

CD’(Ag)Pi_,  dI’T(Ag) =

lAg OOO

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

()Ag
OOOOexp —

T,

0
Ag~ o: 0 0 0

0 0 O;A o 0

0 0 Od o

(B5)

(B6)

))



~5’@’(~i-a)Q@’T(~i-a)da
h

Si

[[

QL(si-a)2 QL(gi-A) o  0 0

Q.(gi--A)  QL O 0 0
0 0 Q. o 0=
o 0 0 0 0

0 0 0 0 Q~ exp
[

2(<, -1)’
T, ,

$i-1

0

~Ag2 QLA< o 0

0
2

0 0 Q,Ag O 0

10 0 0 0 0

(B7)

Equations (B5) and (B6) could be obtained directly from (A2) and (A3) by changing the sign

of the time arguments, but equation (B7) must be derived by integration. Although most of

the state element uncertainties have the same form both forwards and backwards, the back-

ward filter yields qualitatively different behaviors for the PP estimate, its propagated error

(B6) and its excitation (B7).
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Table 1. Operational KEOF Data Sets

Name Type Reported Frequency Availability
Quantities Typical Rapid

TEMPO

IRIS multibaseline

IRIS intensive

NAVNET

CSR (U. Texas)

JPL

NMC O-hour

NMC 5-dav

VLBI

VLBI

VLBI

VLBI

SLR

LLR

AAM

AAMF

UTOiVar.  Lat.b

PM, UT1

UT1

PM, UT1

PM, UTlg

UTO/Var.  Lat.b

AAM analysis

AAM forecasts

twice/weekc

weeklyd

daily

Weeklye

once/3-days

irregular

daily

daily

2-3 days 1 day

14 days 10 days

10 days 7 days

14 daysf 10 days

5 days 3 days

long 1 day

1-2 day 1 day

a All techniques experience data dropouts, so are not strictly regular.
b UTO and V~iation-of-Latiwde are linear combinations of pOIM motion and UT1.

c TEMPO data are acquired on two baselines, each of which is measured once per week.
d Prior to April 1991, IRIS multibaseline data were obtainal every five days.
e NAVNET data are staggered in time with IRIS multibaseline data beginning in 1991.
f The most recent NAVNET data are available more rapidly, with a 6 to 10 day delay.
g CSR UT1 data are not currently employed by KEOF (see text).
Note: IRIS, NAVNET, and CSR data are only distributed once per week, and may thus be
up to one week older than shown in the availability column.
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Table 2. State Vector and Covariance Matrix Parameter Definitions

Parameter Definition

x Polar motion X
Y Polar motion Y

/4 Polar motion excitation (=~1 ) a> b

P2 Polar motion excitation minus annual wobble excitation (=x2-S) a~b

s Annual wobble excitation b

s Time derivative of S b
u UT1–TAI C
L Excess length of day, normalized c~ d

PA Difference between AAM and LOD (AAM - LOD) d
b Bias between AAM analyses and forecasts (AAMF – AAM – y~) d

~F Difference between AAM forecasts and analyses, with a bias term
removed (AAMF – AAM – b) d

Q White noise stochastic excitation for corresponding term i
q AAM forecast model time constant

a Formulation of Barnes et al, [1983].
b See Morabito et al. [19881.

c All tides from 5 days to 18.6 years removed according to Yoder et al. [198 1 ].
d Parameters L, VA, b, and w represent LOD and AAM quantities normalized by Ao,
e.g., Ls AIAO.
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Table 3. Stochastic Model Parameter Values

ModeI Parameter Value

QL 0.0036 mszldayj

QA 0.0004 msz/dayj

QF 0.00225 msz/days

t, 5 days

The Q values are two-sided power spectral densities, i.e.,
they represent the PSD when power is distributed over both
positive and negative frequencies. See Eubanks et al. [1985;
1987]. Units of Q are rns?dayj when LOD and AAM are
normalized by ~, msz/day without normalization.
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Figure Captions

Fig, 1. Comparison between length of day (LOD) and

(AAM), (a) Time series comparison over two years. (b)

atmospheric angular momentum

Squared coherence (after Dickey

et al. [1992]; the 95% confidence level for an 1 l-point smoothing is shown).

Fig. 2, Power spectral density (PSD) of LOD, AAM (both analyses and forecasts), and their

differences. (a) LOD and AAM, (b) AAM analyses and 5-day forecasts, The random-walk

stochastic model for LOD and the autoregressive (AR 1 ) model for the difference of AAMF

and AAM are also shown, The confidence interval on the spectral estimates and the spectral

smoothing are indicated. (Power spectra are one-sided, i.e., they contain the total power of

the time series but extend over positive frequencies only.)

Fig, 3. Set of synthetic input data for KEOF response test. (a) Input UT1 data, with defining

function and one-sigma formal error, (b) Input AAM and AAMF data sets, with defining

functions and one-sigma error.

Fig, 4. Smoothed KEOF output after receiving input data sets shown in Fig. 3. (a) Output

UT1 series, (b) output UT1 formal error (log scale), (c) output LOD, AAM, and AAMF

series, (d) output LOD, AAM, and AAMF one-sigma formal errors (log scale).

Fig. 5. Differences between input measurement (raw) data and smoothed KEOF output

series for a sample KEOF filter run using a full set of geodetic and atmospheric data. Also

shown are the formal errors of both the input data (dashed line) and output data (solid line).

Only the UT1 component is shown, and only for those data types that directly report UT1

(IRIS multibaseline, IRIS intensive, NAVNET).  RMS scatter of the residuals is also shown.

Fig. 6. Differences in KEOF output when atmospheric data are either included or not

included in a full multi-year smoothing, compared to the formal error of the smoothed series
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with AAM included. (a) UT1 component. (b) LOD component. RMS scatters of the dif-

ferences are shown,

Fig. 7, Schematic view of multiple case-study filtering. See text for explanation.

Fig. 8. One year set of prediction errors emerging from the filter case-study for three raw

data sets: geodetic data only, geodetic plus AAM analysis data, and geodetic plus AAM

analysis and 5-day forecast data. (a) UT1 component. (b) LOD component.

Fig, 9. RMS prediction errors over 55 thirty-day cycles spanning 4.5 years for the three data

sets shown in Fig. 8. (a) UT 1 prediction errors. (b) LOD prediction errors, with the time

intervals within which the various raw data may fall also shown. The one-sigma error uncer-

tainties predicted from the stochastic excitation component of the filter model (assuming the

state to be known perfectly on day 10 of the cycle) are also shown.

Fig. 10. UT1 prediction errors in every cycle from the case study for geodetic data sets both

with and without the AAM. (a) Prediction errors at the filtering epoch (day zero of predic-

tion). (b) Prediction errors on day five.

Fig. 11. RMS prediction errors made with TEMPO data absent, IRIS intensive data absent,

and all data present. Atmospheric data are included in all three filter runs. (a) UT1 compo-

nent, (b) LOD component. The TEMPO and IRIS intensive data windows are shown. Note

the change in scale from Fig. 9.

Fig. 12. RMS prediction errors made assuming either standard data turnaround times or

rapidly available data, both with and without AAM data. (a) UT1 component. (b) LOD

component.

5 0

Fig. 13. Quality factorj  curves (see text) for the three data sets shown in Figs. 8 and 9. (a)

UT1 component. (b) LOD component. Interpreting ~ as a chi-squared quantity and
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assuming valid statistical models, the region within which there is a 99% probability of the~

value falling is shown,

Fig. 14. Comparison of UT1 predictions over a six-month period. (a) Twice-weekly

(operational) KEOF predictions minus Bulletin A smoothing. (b) Weekly KEOF predictions

minus Bulletin A smoothing. (c) Weekly Bulletin A predictions minus Bulletin A smooth-

ing. The mean and standard deviation for each difference series are shown,
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